//
archives

Info

This category contains 12 posts

Maret 2016…


Entah sudah berapa lama blog ini dibiarkan terbengkalai alias tidak terurus….
mungkin sudah sekitar 3 atau 4 tahun lebih blog ini tidak di update, kasihan…
Ini akibat terlalu asyik di FB.
165770-fb_status575x400v2_slide

Iklan

Test your project’s mettle with a protected dummy load


prected dummy load

For a power hungry project the supply is sometimes a pretty big unknown. Whether stapling together a few different power supplies to meet a current requirement, or designing a system from the ground up: a big power supply can be quite a dangerous thing. It helps to have some kind of a dummy load to really shake down the electronics and get an idea of how hot things get or test stability before trusting the supply to run your stuff. [Paulo Oliveira] has constructed just such a thing, a slick looking adjustable constant current load.

Following the popular LM324 circuit from [David Jones] at EEVblog [Paulo] decided to make use of the two spare op-amps to provide both a thermal overload and a cooling fan circuit. We have seen other tweaks to [David]‘s circuit in the past but through some resistors and MOSFETs [Paulo] can now load up to 7A (limited by resistor wattage). We would have used a really crazy server vacuum fan to make it genuinely frightening to push heavier loads. Thanks [Paulo]!

by Jesse Congdon

Filed under: how-to

Adding a serial trigger to a logic analyzer


logic

If you’re attempting to debug a serial bus with a bare-bones logic analyzer, you’re going to have a bad time. Most of the inexpensive analyzers available don’t have a serial pattern trigger, or a way to start recording data after a specific pattern of bits comes down the pipe. [Neil] sent in a great little project that adds a serial trigger to these analyzers, we’ve got to hand it to him for designing such a useful board.

[Neil] designed a small board featuring a CLPD that converts serial data to parallel data. By setting the trigger condition of the logic analyzer to any 24-bit pattern he wants, it’s possible for [Neil] to sniff a serial bus exactly when he wants to.

The circuit is quite minimal, basically just a 100-pin CLPD and a bunch of 0.100″ header pins. It’s a useful tool, and although we couldn’t find the board file to make our own, we’re sure [Neil] will be providing that shortly.

by Brian Benchoff

Filed under: tool hacks

PCB manufacturing tutorial


pcb

There comes a time in every maker’s career where solderless breadboards won’t do, perfboard becomes annoying, and deadbug is impossible. The solution is to manufacture a PCB, but there’s a learning curve. After learning a few tricks from [Scott]‘s awesome DIY PCB guide, it’s easy to make your own printed circuit boards.

There are a few basic steps to making a PCB. First is designing the board in Eagle or KiCad. The next step, putting the design into copper, has a lot of techniques to choose from. Photo transfer, direct printing, and CNC milling have huge benefits, but by far the most common means hobbyists produce boards is with toner transfer using a laminator.

Unless you’re doing SMD-only circuits, a drill is required. Most people can get away with a Dremel or other rotary tool, but Hackaday has a favorite drill press that is perfect for drilling holes in FR-4. In part two of [Scott]‘s tutorial, he goes over solder masks, silk screens before jumping into vias. These small bits of copper conducting electricity through a circuit board are extremely hard for the garage-bound builder to achieve on their own, but there are a few solutions – copper rivets (anyone have a US source for these?) and copper foil can be used, but sometimes the most effective solution is just hitting the board with a lot of solder and heat.

Thanks [Upgrayd] for the title pic.

by Brian Benchoff         Source: how-to, tool hacks

Fine tune your Morse Code skills with this mint tin practice keyer


mint-tin-keyer

Hackaday reader [svofski] wrote in to share a device he built, which would be useful to any ham operators out there trying to hone their CW skills. He calls his practice keyer the Morseshnik, and it is a combination of various items [svofski] found while digging through his parts drawer.

He disassembled an old hard drive, saving its read arm to serve as the keyer’s paddle. He purchased some small angle brackets to create a set of contacts for the device, between which the lever sits, automatically centered by a pair of springs.

An MSP430, which was also collecting dust in [svofski’s] junk pile, resides inside the Morseshnik’s mint tin base on a small DIY PCB. It allows him to toggle between manual and automatic keying modes with the flick of a switch as he whiles his time away practicing his dits and dahs.

Continue reading to see a short video of the Morseshnik in action, and swing by his site for code and PCB schematics should you want to build one of your own.

by Mike Nathan          Source:classic hacks

%d blogger menyukai ini: